1. The heart is a **two-sided pump**.

2. The heart is essentially a **modified blood vessel(s)**.

3. The heart is within the **mediastinum**.

4. The heart is within the **pleural space (cavity)**.

5. Most of the heart is to the **left** of the body's midline.

6. Most of the heart is to the **right** of the body's midline.

7. The lymphatic system is **not** a part of the cardiovascular system.

8. The lymphatic system is **a part of the cardiovascular system**.

9. Most of the heart's base is the **left atrium**.

10. Most of the heart's base is the **left ventricle**.

11. Five centimeters inferior to the left nipple, in the fifth intercostal space, is the position of the heart's **apex**.

12. The lymphatic system is concerned with the intestinal absorption of **proteins**.

13. The outermost layer of the actual heart wall is the **fibrous pericardium**.

14. The atrio-ventricular and semi-lunar valves are **completely mechanical** in their operation.

15. The atrio-ventricular valves contain special branches from the bundle of His, since, unlike the semi-lunar valves, they are **not** completely mechanical devices.

16. The pulmonary veins return blood to the **left atrium**.

17. The myocardium consists of **spiral sheets** of muscle.

18. **Semilunar** valves require chordae tendineae to hold them closed.
19. Trabeculae carneae are part of the endocardium.

20. Blood is squeezed from the ventricles due to the spiraling sheets of myocardial muscle.

21. Myogenicity refers to the heart's ability to spontaneously initiate its own function.

22. Autorhythmicity refers to the sino-atrial and atrio-ventricular nodes’ ability to depolarize without absolute nervous control.

23. Autorhythmicity refers to the sino-atrial and atrio-ventricular nodes’ ability to depolarize spontaneously at regular intervals.

24. Depolarizations are conducted from the atrio-ventricular node through the ventricles in the identical manner as the sino-atrial node sends them through the atria.

25. Depolarizations are conducted from the atrio-ventricular node through the ventricles in a different manner as the sino-atrial node sends them through the atria.

26. The sino-atrial node has no interconnection with the atrio-ventricular node.

27. The sino-atrial node has interconnections with the atrio-ventricular node via internodal pathways.

28. Tetanization is not possible in cardiac muscle.

29. Cardiac muscle can be tetanized.

30. An EKG is a recording of the heart's mechanical cycle.

31. An EKG is a recording of the heart's "electrical" cycle.

32. An EKG usually can not reveal a purely mechanical defect of the heart.

33. There is an overlap of atrial and ventricular systoles.

34. There is an overlap of atrial and ventricular diastoles.

35. During the cardiac cycle, to produce the necessary "milking" action, there is no time when atria and ventricles are together relaxed nor contracted.
36. More blood enters the ventricles during atrial diastole than atrial systole.

37. Blood is sucked from the atria by the ventricles, more than it is pumped into the ventricles by the atria.

38. The first heart sound occurs during the beginning of ventricular systole.

39. The first heart sound occurs during the beginning of ventricular diastole.

40. The second heart sound occurs during the beginning of ventricular systole.

41. The second heart sound occurs during the beginning of ventricular diastole.

42. The third heart sound is caused by ventricular filling vibrations.

43. The third heart sound is caused by semilunar valve opening.

44. The fourth heart sound is abnormal.

45. Most of the blood entering the ventricles is forced in during atrial systole.

46. A normal EKG could be obtained from someone with a purely mechanical heart defect.

47. To massage ("milk") blood from the ventricles, depolarizations and contractions will begin in the heart's base and sequentially move towards the apex.

48. The right and left ventricles contract together.

49. Atria and ventricles always contract at the same time.

50. To massage ("milk") blood from the ventricles, depolarizations and contractions will begin in the heart's apex and sequentially move towards the base.

51. Cardiac muscle will produce less powerful contractions when stretched by increased end diastolic volume (EDV).

52. Cardiac muscle will produce more powerful contractions when stretched by increased end diastolic volume (EDV).

53. Sympathetic impulses from the vasomotor center of the medulla inhibit the heart.
54. Sympathetic impulses from the vasomotor center of the medulla stimulate the heart.

55. Hyperkalemia will inhibit the heart.

56. Hyperkalemia will stimulate the heart.

57. Parasympathetic impulses from the vasomotor center of the medulla inhibit the heart.

58. Parasympathetic impulses from the vasomotor center of the medulla stimulate the heart.

59. The maximum effective heart rate is typically 180 per minute.

60. The maximum effective heart rate is typically 250 per minute.

61. The maximum effective heart rate is typically 95 per minute.

62. If end diastolic volume increases, then stroke volume should decrease.

63. Hypercalcemia would produce heart hyperactivity.